Bir Vektör Alanının Diverjansı

Herkese merhabalar, bu yazımızda sizlere bir vektör alanının diverjansını ve diverjans hakkında çözümlü örnek soruları aktaracağız.

Bir Vektör Alanının Diverjansı

Üç boyutlu uzaylarda vereceğimiz diverjansın fazla boyutlu uzaylara genişletilebileceği açıktır. Üç boyutlu bir vektör alanı sürekli türevlenebilir olmak üzere;

gösterimine sahip ve gradyent operatörü;

ise W vektör alanı ile ∆ sembolik vektörünün iç çarpımı kurulursa;

ifadesi elde edilir.∆.W ya da divw ile gösterilen bu W vektör alanının diverjansı adını alır. Diverjans operatörü, vektör alanlarını skaler alanlarına götüren bir diferensiyel operatörüdür. Diverjans kavramı, matematik ve fizikte büyük önemi olan diverjans teoreminde temel bir araçtır. Ayrıca diverjans operatörü, mekanikte, akışkan akışlarda (fluid flow), elektromanyetizmada bir çok problemlerde kullanılır. Diverjans operatörünün geometrik anlamı, yüksek analiz ve diferansiyel geometride uygulamaları olan çok sayıda genelleştirmeye yol göstermiştir.

u ve v vektör alanları ile f skaler alanı sürekli türevlenebilir olmak üzere diverjans operatörünün aşağıdaki özellikleri geçerlidir.

Diverjans Hakkında Çözümlü Örnekler

Soru 1=

vektör fonksiyonu veriliyor.Buna göre divw‘nin P0(1,0,-2) noktasındaki değerini bulalım.

Çözüm 1=

olduğuna göre

ve divw’nin P0 noktasındaki değeri;

olarak bulunur.

Herkese iyi çalışmalar dileriz.Konu hakkındaki diğer örnekleri zamanla ekleyeceğiz.

YORUMLAR

Bir yanıt yazın

E-posta adresiniz yayınlanmayacak. Gerekli alanlar * ile işaretlenmişlerdir